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Abstract 

Throughout the COVID-19 pandemic, underserved populations, such as racial and ethnic minority communities, 
were disproportionately impacted by illness and death. Ensuring people from diverse backgrounds have the ability 
to participate in clinical trials is key to advancing health equity. We sought to analyze the spatial variability in locations 
of COVID-19 trials sites and to test associations with demographic correlates. All available and searchable COVID-19 
studies listed on ClinicalTrials.gov until 04/04/2022 and conducted in the United States were extracted at the trial-
level, and locations were geocoded using the Microsoft Bing API. Publicly available demographic data were available 
at the county level for national analysis and the census tract level for local analysis. Independent variables included 
eight racial and ethnic covariates, both sexes, and twelve age categories, all of which were population-normalized. 
The county-level, population-normalized count of study site locations, by type, was used as the outcome for national 
analysis, thereby enabling the determination of demographic associations with geospatial availability to enroll 
as a participant in a COVID-19 study. Z-scores of the Getis-Ord Gi statistic were used as the outcome for local analysis 
in order to account for areas close to those with clinical study sites. For both national (p < 0.001) and local analysis 
(p = 0.006 for Los Angeles, p = 0.030 for New York), areas with greater proportions of men had significantly fewer stud-
ies. Sites were more likely to be found in counties with higher proportions of Asian (p < 0.001) and American Indian 
or Alaska Native residents (p < 0.001). Areas with greater concentrations of Black or African American residents had sig-
nificantly lower concentrations of observational (p < 0.001) and government-sponsored COVID-19 studies (p = 0.003) 
in national analysis and significantly fewer concentrations of study sites in both Los Angeles (p < 0.001) and New 
York (p = 0.007). Though there appear to be a large number of COVID-19 studies that commenced in the US, they are 
distributed unevenly, both nationally and locally.
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Background
The coronavirus disease (COVID-19) was declared 
a public health emergency of international concern 
by the World Health Organization at the end of Janu-
ary 2020 and to date has claimed more than 6.2 mil-
lion lives globally, with more than 1 million lives lost 
in the United States alone [1, 2]. Critical to arresting 
the spread of this devastating global pandemic has been 
investment and rapid research and development (R&D) 
of vaccines, therapeutics, diagnostics, and other medi-
cal countermeasures (MCMs) [3]. Robust public and 
private partnership on MCM R&D has led to the intro-
duction of new vaccine platforms, oral antivirals and 
monoclonal antibodies, and rapid diagnostics tests, all 
of which have significantly reduced COVID-19-related 
morbidity and mortality [4–6]. As of December 2022, 
there were a total of 436,584 studies registered glob-
ally in ClinicalTrials.gov (“CT.gov”, a U.S. government 
sponsored database of privately and publicly funded 
clinical studies).

The need to develop MCMs as a key public health 
strategy to mitigate the social, health, and economic 
consequences of the COVID-19 pandemic has also 
increased urgency around ensuring that clinical 
research purposefully addresses known and widening 
health equity concerns, including ensuring inclusive 
and diverse trial demographics and participation [7–
10]. Throughout the COVID-19 pandemic, underserved 
populations, such as racial and ethnic minorities, were 
disproportionately impacted by illness and death. Racial 
and ethnic minority groups have experienced mortal-
ity rates 10–50% higher than non-Hispanic Whites [11, 
12]. Participants in clinical trials should reflect the indi-
viduals who may one day need to rely on these drugs, 
vaccines or devices to manage illness. Ensuring people 
from diverse backgrounds have the ability to partici-
pate in clinical trials is key to advancing health equity 
and advancement of science. Though prior studies have 
been conducted to analyze characteristics of clinical 
studies using ClinicalTrials.gov (“CT.gov”) for vari-
ous medical conditions, no study we are aware of has 
looked specifically at demographic variables in spatial 
proximity to COVID-19 studies [13–16]. To remedi-
ate this existing gap, this study aims to characterize the 
spatial variability of U.S.-based COVID-19 clinical trial 
sites and to assess their geographic associations with 
demographic variables, thereby enabling the identifica-
tion of communities that may have disproportionately 
low access to COVID-19 studies. Therefore, this study 
seeks to promote better understanding of COVID-19 
and clinical trial-related health disparities research by 
understanding how geographic patterns to trial access 
may vary at the local and national level.

Methods
This analysis assessed the spatial clustering of COVID-
19 study site locations, by type, in the United States as 
well in select localities where significant hot spot clus-
ters of study sites were detected. In this paper, we refer 
to “study sites” as spatial locations listed on CT.gov where 
COVID-19 research was being conducted. Data col-
lection involved: (a) extraction and data mining of the 
location and characteristics of COVID-19 studies from 
CT.gov; (b) de-aggregation of studies by location, for 
multi-site studies; (c) geocoding of locations to produce 
latitude and longitude coordinates; and (d) aggregation 
of study locations to county and census tract bins. Data 
analysis involved: (i) computation of the Getis Ord Gi* 
statistic for spatial clustering; (ii) normalization using 
county-level population for national analysis and census 
tract-level population for local analysis; and (iii) assess-
ing the relationship between area clustering and demo-
graphic composition with other secondary data related to 
race and ethnicity, sex, and age.

Data collection
Data on clinical studies categorized as associated 
with “COVID-19,” “COVID-19 acute respiratory dis-
tress syndrome,” “COVID-19 Lower Respiratory Infec-
tion,” “COVID-19 Pandemic,” “COVID-19 Pneumonia,” 
“COVID-19 Respiratory Infection,” or “Coronavirus” 
were collected from CT.gov on April 4, 2022 using data 
extraction tools available on the website. No date restric-
tions were placed on the extraction. A manual review of 
study titles suggested that the study categories had face 
validity for studies addressing infection with the SARS-
CoV2 pathogen. The export included one row per clinical 
study, with a location covariate which had, for each study, 
an array of study sites. A script was written in the Python 
programming language to generate a dataset whereby 
cases corresponded to distinct study sites, rather than 
studies themselves. Data on specific study characteristics 
were attributed to each study site. Other than location, 
covariates for study characteristics included enrollment 
for the overall study, study start date, study completion 
date (if available), funding source, intervention type, trial 
phase, sponsor name, and study title. As part of feature 
engineering, functions in Microsoft Excel were used to 
search strings in covariates from CT.gov. Specifically, 
intervention data were searched for terms “drug,” “bio-
logical,” and “behavioral.” Funding source categoriza-
tions made available from CT.gov were predominantly 
“NIH,” “Industry,” “Other,” or some combination of these 
three (e.g. “Industry|Other” or“Other|NIH”). Data on 
trial phase was also converted into four binary variables 
(one for each phase) to enable statistical analysis. Data 
on county-level and census tract-level demographic 



Page 3 of 11Cuomo et al. International Journal for Equity in Health           (2025) 24:26  

composition were obtained from five-year estimates of 
the U.S. Census Bureau’s American Community Survey 
(ACS) for calendar year 2020. Data on urban and rural 
categorization were taken from metropolitan classifica-
tions available from the U.S. Department of Agriculture 
(USDA).

Latitude and longitude coordinates for study locations 
were obtained for each study site using the Bing Maps 
Application Programming Interface (API). Coordinates 
for study sites were then plotted on a Global Coordinate 
System using the 1984 World Geodetic System on Arc-
GIS Desktop version 10.7. All study sites were matched to 
latitude and longitude coordinates, and mapped locations 
were manually reviewed in instances where location text 
from CT.gov appeared ambiguous (e.g. not an address 
or landmark). The count of study sites was computed for 
each U.S. county, as well as for each U.S. census tract, and 
then used to create geodatabases with county- and tract-
specific data for population demographics.

Data analysis
For descriptive analysis of U.S.-based trial sites, per-
centages were calculated to assess the distribution of all 
COVID-19 studies by funding source type, study length, 
and intervention/observational study type. For interven-
tional studies, the proportion of trials addressing drugs, 
biologics, and behaviors were computed, as well as the 
proportion of trials by each phase. Total enrollment and 
average enrollment were computed for each stratum 
of descriptive categorization. Descriptive analysis was 
conducted at the study level rather than the site level, as 
information from CT.gov was attributable to the overall 
study rather than the individual sites.

For each polygon, the Getis Ord Gi* statistic was com-
puted based upon the aggregation of each of the follow-
ing nine types of studies and different categories: A) all 
COVID-19 studies, (B) phase 1 trials, (C) phase 2 trials, 
(D) phase 3 trials, (E) phase 4 trials, (F) interventional 
studies, (G) observational studies, (H) government-spon-
sored studies, and (I) industry-sponsored studies. These 
nine analyses were conducted at the national level and for 
each of the local sites included in this study as detected 
by our hot spot analysis (see below). The Getis-Ord Gi* 
statistic evaluates each feature in the dataset, consid-
ering its value as well as the values of its neighboring 
features, within the context of the entire dataset. This 
approach identifies clusters, or "hot spots," where a fea-
ture (e.g., a county) and its nearby neighbors have signifi-
cantly higher values compared to the dataset as a whole. 
The fixed distance band was used as the weight matrix, 
enabling neighboring polygon counts to factor into the 
calculation of Getis Ord Gi* for the given polygon. Getis 
Ord Gi* statistics were used to produce a p value for 

statistically significant hot spots (clustering of high val-
ues) and cold spots (clustering of low values) for each 
polygon. Visualizations of statistically significant cluster-
ing were then generated.

For comparative national analysis, population-normal-
ized counts of study sites, by type, as well as aggregated 
study enrollment, were used as outcome variables for 
statistical analysis. For local analysis, to account for the 
relevance of census tracts spatially proximal to those with 
study sites, z-scores of the Getis Ord Gi* statistic for total 
counts was used as the outcome variable to represent 
possible association with study access. This approach 
allowed local analysis to involve a dependent variable 
which exhibited a gradient for clustering, enabling empty 
tracts neighboring those with study sites to exhibit non-
zero values and therefore permitting a more valid meas-
ure of study site availability. Independent variables for all 
analyses were also population-normalized for race and 
ethnicity categories, sex, and age group. Statistical soft-
ware excluded non-Hispanic White race and age group 
65–74  years from multivariable modeling due to multi-
collinearity. Regression analysis was conducted using R 
version 4.1.2.

Results
Clinical trial characteristics
There were a total of 1,653 COVID-19-related stud-
ies registered on CT.gov as of April 4, 2022. Of these, 
13.2% (n = 219) were government-sponsored, 36.7% 
(n = 585) were industry sponsored, and the remainder 
51.4% (n = 849) were categorized as "Other." Additionally, 
70.0% (n = 1155) were categorized as interventional and 
29.0% (n = 479) were observational. Furthermore, 85.2% 
(n = 1409) of studies enrolled only participants at least 
18  years of age. Study start dates were skewed toward 
earlier time frames, with 948 (58%) starting in 2020, 549 
(37%) starting in 2021, just 107 (7%) starting in 2022 
(prior to the April 4th data collection date). The median 
study length was 392  days. However, the completion 
dates of 743 studies (45.5%) in our sample were after the 
date when we collected these data (04–04–2022). Nearly 
all study sites (96.8%) were located in urban areas.

Of the 1,155 trials categorized as interventional, 51.8% 
(n = 599) studied drug-based interventions, whereas only 
21.9% (n = 253) were for biologics and 15.7% (n = 182) 
for behavioral interventions (see Table  1). Aggregate 
reported enrollment was 724,838 for drug-based stud-
ies (x̄ = 1,210), 771,275 for biologics-based studies 
(x̄ = 3,049), and 2,646,639 for behavior-based studies 
(x̄ = 14,542). An outlier was removed for a behavioral 
trial with projected enrollment of 40,000,000. The count 
of trials by phase appeared to be approximately normally 
distributed.
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Geographic characteristics of trial locations
There were a total of 37,043 distinct sites in the United 
States for COVID-19 studies registered on CT.gov 
with trials taking place in all 50 states and the Dis-
trict of Columbia. Statistical analysis of spatial cluster-
ing revealed that all study types exhibited statistically 
significant hot spots centered around the Los Angeles 
Basin and New York City, though the expansiveness of 
the cluster differed across study types (see Appendix 
Fig. 3). More broadly, we observed local hot spot clus-
ters of trials detected in Southern California expanding 
to Southern Arizona for Phase 2 trials, Phase 3 trials, 
interventional studies, and industry-sponsored stud-
ies; and a Northeastern cluster expanding as far north 
as the Boston Metropolitan Area for Phase 2 trials, 
Phase 4 trials, observational studies, and government-
sponsored studies. Statistically significant hot spots 
were also evident in the Texas Triangle for all types of 
studies except Phase 4 trials and observational trials, 
with the same pattern observed for South Florida. Fur-
thermore, significant hot spots were observed for the 
Denver Metropolitan Area, the Seattle Metropolitan 
Area, and parts of Michigan for observational studies 
and government-sponsored trials. No statistically sig-
nificant cold spots were observed nationally (see Fig. 1).

When assessing potential demographic associations 
with trial location clustering at the national level, statisti-
cally significant relationships with race and ethnicity, sex, 
and age category covariates were evident in multivariable 
linear modeling for all types of normalized study counts 
(see Table 2). For all study types, either male residents per 
capita exhibited a significantly negative relationship or 
female residents per capita exhibited a significantly posi-
tive relationship, revealing a consistent sex-based pattern 
associated with proximity to a trial site. Furthermore, the 
normalized number of residents aged 25–34  years was 
significantly positively associated to the normalized rate 
of COVID-19 studies, for all study types. Conversely, the 
normalized number of residents aged 35–44  years was 
negatively related to the normalized rate of Phase 1 trials 
and interventional studies, while not being significantly 
associated with other study types.

In regard to race and ethnicity, the number of Asian 
residents per capita was significantly positively related 
to proximity and enrollment of all types of trials. Both 
the number of American Indian or Alaska Native resi-
dents per capita and the number of Hispanic or Latino 
residents per capita were also positively associated with 
the number of industry-sponsored studies, Phase 2 tri-
als, Phase 3 trials, and interventional studies per capita. 

Table 1 Descriptive statistics for COVID-19 studies in the United States registered on clinicaltrials.gov

a Categories for intervention type may overlap, as some trials were designated as studying multiple interventions

Categories Total Enrollment Average Enrollment Frequency Percentage 
of COVID-19 
Trials

 NIH/Govt-Sponsored 42,272,220 193,024 219 13.2%

 Industry-Sponsored 52,165,038 89,018 585 35.4%

 Other 17,207,228 20,268 849 51.4%

 Interventional 44,616,598 38,595 1,155 69.9%

 Observational 67,027,888 136,513 479 29.0%

 Other 0 0 19 1.1%

Interventional Study Categories Total Enrollment Average Enrollment Frequency Percentage 
of Inter-
ventional 
Trialsa

 Drugs 724,838 1,210 599 51.8%

 Biologics 771,275 3,049 253 21.9%

 Behavioral 2,646,639 14,542 182 15.7%

 Other 1,252,739 5,447 230 20.0%

 Early Phase 1 5,191 192 27 2.3%

 Phase 1 6,162 53 116 10.0%

 Phase 1|Phase 2 14,083 231 61 5.3%

 Phase 2 267,949 797 336 29.1%

 Phase 2|Phase 3 164,032 2,546 62 5.4%

 Phase 3 444,117 3,218 138 12.0%

 Phase 4 58,091 1,139 51 4.4%

 Not Applicable 3,656,973 9,523 364 31.6%
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Fig. 1 Clustering of COVID-19 study sites in the United States for (A) all studies, (B) Phase 1 trials, (C) Phase 2 trials, (D) Phase 3 trials, (E) Phase 4 
trials, (F) interventional studies, (G) observational studies, (H) government-sponsored studies, and (I) industry-sponsored studies. Red shading 
indicates statistically significant hot spots
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Conversely, the number of Black or African American 
residents per capita was significantly negatively associ-
ated with the rate of government-sponsored studies and 
observational studies while being positively associated 
with the rate of Phase 2 trials. Finally, the number of 
Native Hawaiian or Other Pacific Islander residents per 
capita was significantly negatively associated with the 
number of government-sponsored studies per capita.

The distribution of the directionality of statistically sig-
nificant associations nationally was similar for normalized 
study enrollment as for normalized study site number. In 
other words, demographic groups more likely to reside 
in counties with higher numbers of study sites tended to 
also reside in counties whose studies had higher enroll-
ment. However, interestingly, despite the positive associa-
tion of Hispanic or Latino residents with numerous study 
types, there was no significant relationship between overall 
county-level enrollment per capita and Hispanic or Latino 
residents per capita. Furthermore, though no significant 
relationships for the 20–24 years age group was observed 
with study site count, a statistically significant inverse 
association was observed with county-level enrollment.

Localized hot spot analysis
In the context of the two localized hot spots detected in 
our national geospatial analysis, 377 study sites (corre-
sponding to 243 studies) were in the Los Angeles Basin 
(see Fig. 2A). Statistically significant hot spots in this area 
were observed in the Westwood neighborhood of Los 
Angeles, the coastal areas of Long Beach, and the city of 
Irvine. These local clusters appear to have been driven 
by, respectively, healthcare centers of the University of 

California, Los Angeles; Long Beach Medical Center 
and Long Beach Memorial; and healthcare centers of 
the University of California, Irvine. Pearson’s correla-
tion coefficients computed between clustering z-scores 
and race and ethnic concentration at the census tract 
level revealed a significant positive association of clinical 
trial sites with density of non-Hispanic White residents 
per capita (ρ = 0.200, p < 0.001) and Asian residents per 
capita (ρ = 0.037, p = 0.037); no association with Native 
Hawaiian or Other Pacific Islander residents per capita; 
and significant negative associations with Black or Afri-
can American residents per capita (ρ = −1.01, p < 0.001), 
American Indian or Alaska Native residents per capita 
(ρ = −0.168, p < 0.001), and Hispanic or Latino residents 
per capita (ρ = −0.267, p < 0.001; see Table 3A).

There were 399 COVID-19 study sites in New York 
City belonging to 260 unique studies (see Fig. 2B). Cluster 
analysis revealed three statistically significant hot spots in 
the Upper East Side, the Upper West Side, and the Bronx. 
These appear to have been driven by, respectively, Weill 
Cornell Medical Center, Columbia University Irving 
Medical Center, and Montefiore Medical Center. As with 
the Los Angeles Basin, clustering of COVID-19 studies 
in New York City was significantly positively associated 
with per capita non-Hispanic White residents (ρ = 0.079, 
p < 0.001) and significantly negatively associated with per 
capita Black or African American residents (ρ = −0.057, 
p = 0.007; see Table  3B). However, these correlations 
were much weaker, and no significant associations were 
observed with normalized Asian nor Hispanic/Latino 
residents. Sex and age category correlations mirrored 
those for the Los Angeles Basin, with a significant inverse 

Fig. 2 Clustering of COVID-19 study sites in (A) Los Angeles Basin and (B) New York City. Red shading indicates statistically significant hot spots 
and blue points represent location of individual trial sites
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association with males per capita (ρ = −0.047, p = 0.030) 
and the two most strongly correlated age categories being 
the two youngest: age 0–4 years (ρ = −0.118, p < 0.001) and 
age 5–10 years (ρ = −0.178, p < 0.001). Multivariable mod-
els of clustering score with population-normalized demo-
graphic covariates also revealed discrepancies across race 
groups as well as significant negative associations with 
Black or African American race and Hispanic or Latino 
ethnicity in the Los Angeles area, though the group of age 
covariates and the group of sex covariates exhibited little 
variation in directionality (Appendix Table 1).

Discussion
Results from this study indicate that there appears to 
exist a high degree of spatial variability in the geographic 
locations of COVID-19 clinical trial study sites regis-
tered in CT.gov, both nationally and when examining 
local communities identified through hot spot analy-
sis, and that these discrepancies appear to be related 
to the demographic composition of certain areas of the 
country. This study also sought to determine whether 
demographic associations vary by type of study, but this 
variation remains unclear.

Descriptive analyses suggest that COVID-19-related 
clinical trials are mostly comprised of interventional 
trials rather than observational studies. Furthermore, 
among interventional trials, the intervention most com-
monly studied was a drug rather than a biologic or other 
means of addressing COVID-19 (e.g., behavior change, 
surgical technique, medical device, etc.). The relatively 
high proportion of industry-sponsored studies in this 
sample suggests high activity of industry actors in pursu-
ing and investing in R&D for COVID-19 MCMs and an 
emphasis on dealing with public health emergencies.

Spatial clustering of COVID-19 studies also appears to 
be partly driven by total population, as New York City 
and Los Angeles are the two most populous cities in 
the United States. That being said, stratification of stud-
ies by type revealed inconsistencies in spatial clustering, 
especially as it relates to the Texas Triangle and Southern 
Florida, which did not exhibit statistically significant clus-
tering for Phase 4 and observational studies. A discrep-
ancy in the spatial clustering based on study design type 
may reflect differences in where investments are being 
made for generating real-world evidence on COVID-
19, including those related to post-market surveillance, 

Table 3 Bivariate correlations between demographic covariates for (A) Los Angeles Basin (n = 2,958 census tracts) and (B) New York 
City (n = 2,170 census tracts). Emphasis added for statistically significant correlations

Panel A Panel B

Covariate Pearson’s Rho p Covariate Pearson’s Rho p

White 0.2 < 0.001 White 0.079 < 0.001

Black or African American −0.101 < 0.001 Black or African American −0.057 0.007

American Indian or Alaska Native −0.168 < 0.001 American Indian or Alaska Native −0.013 0.536

Asian 0.037 0.045 Asian −0.029 0.170

Native Hawaiian and Other Pacific Islander 0.033 0.071 Native Hawaiian and Other Pacific Islander 0.004 0.838

Hispanic or Latino −0.267 < 0.001 Hispanic or Latino 0.003 0.873

Other Race −0.23 < 0.001 Other Race −0.008 0.704

Multi-Racial 0.057 0.002 Multi-Racial 0.003 0.875

Male −0.051 0.006 Male −0.047 0.030

Female 0.012 0.526 Female 0.057 0.008

Age 0–4 Years −0.191 < 0.001 Age 0–4 Years −0.118 < 0.001

Age 5–9 Years −0.223 < 0.001 Age 5–9 Years −0.178 < 0.001

Age 10–14 Years −0.27 < 0.001 Age 10–14 Years −0.192 < 0.001

Age 15–19 Years −0.135 < 0.001 Age 15–19 Years −0.091 < 0.001

Age 20–24 Years 0.06 0.001 Age 20–24 Years 0.097 < 0.001

Age 25–34 Years 0.107 < 0.001 Age 25–34 Years 0.164 < 0.001

Age 35–44 Years −0.018 0.330 Age 35–44 Years 0.029 0.173

Age 45–54 Years −0.045 0.014 Age 45–54 Years −0.073 0.001

Age 55–64 Years 0.065 < 0.001 Age 55–64 Years −0.015 0.488

Age 65–74 Years 0.119 < 0.001 Age 65–74 Years 0.083 < 0.001

Age 75–84 Years 0.123 < 0.001 Age 75–84 Years 0.013 0.549

Age 85 + Years 0.16 < 0.001 Age 85 + Years 0.022 0.295
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though more analysis is needed. We also observed that 
the influence of government funding appears to be mixed, 
as a more distributed set of overall study clustering was 
observed when compared to industry-sponsored stud-
ies. Government-funded studies exhibited positive asso-
ciations with normalized Asian population, like industry 
sponsored studies. Industry-sponsored studies also exhib-
ited positively associations with normalized White or 
American Indian or Alaska Native residents.

Analysis of the two largest national clusters revealed that 
local clustering may have been driven by the activities of 
large medical centers, especially those affiliated with urban 
academic health systems. In both areas, COVID-19 studies 
were located in areas with higher proportions of non-His-
panic White residents, and conversely located farther away 
from areas that were predominantly comprised of Black or 
African American communities. Though the influence of 
spatial distribution on actual participant recruitment prac-
tices is outside of the scope of this study, findings suggest 
that special attention should be given to recruit Black or 
African Americans into clinical trials, given the general extra 
distance of study sites from areas with higher proportions of 
Black or African American residents as observed in some of 
the U.S. areas reviewed in this study [17]. The creation of sat-
ellite study sites in these areas may be particularly effective in 
remediating proximity-related access barriers. Additionally, 
negative geographical proximity associations were observed 
with the youngest age groups (as well communities with 
a high proportion of parents with younger children). It is 
unknown whether this is an artifact of the high cost of living 
near urban academic health systems or the focus of clinical 
studies primarily on adult study participants, and whether 
the overall frequency of COVID-19 studies on children may 
be low due to population access or other concerns (e.g., ethi-
cal issues, low rate of severe illness) [18, 19].

Importantly, inadequate representation and inclusiv-
ity in clinical studies represents a threat to the potential 
utility of clinical evidence generated and as needed to 
benefit underrepresented communities already dispro-
portionately impacted by COVID-19. Prior studies ana-
lyzing non-COVID-19 participant-level trial data have 
also found variable representation of racial and ethnic 
minorities for different therapeutic areas at US sites [10, 
20]. Findings from this study suggest geographic mald-
istribution exists with respect to proximity for different 
age, sex, and racial and ethnic minority populations in 
COVID-19 clinical studies. A high degree of local spatial 
variation appeared to be driven by the location of major 
academic hospitals. However, in national analysis, clus-
tering of COVID-19 studies did not appear to occur in 
all areas with major academic hospitals. Participants in 
clinical trials should reflect the individuals who may one 
day need to rely on drugs, vaccines or devices to manage 

their illnesses. Geographic maldistribution and travel 
burden can be a notable barrier for a certain demograph-
ic’s ability to participate in clinical trials and should be 
considered in the design of future studies.

Limitations
Results of this study reflect general trends in community-
level areas, and therefore are subject to ecological fallacy, 
whereby results may not apply to specific trials in those 
areas. Moreover, many associations uncovered as part of 
this study may be moderated by unaccounted modera-
tors, such as transportation or community perspectives on 
clinical science. Many covariates obtained from CT.gov, 
including location, are derived from user-generated inputs 
with limited standardization. Efforts were made to remove 
misspellings and vague attributions from local analyses, 
whose patterns were sensitive due to small sample sizes 
and the effect of city-level attribution rather than that for 
specific locations. Nevertheless, national analysis may be 
partly influenced by user-generated error. Furthermore, 
the outcome variables denoting trials in spatial areas may 
suffer from constraints on internal reliability due to time 
varying confounding, particularly as the primary areas 
of investigation may have shifted over the course of the 
COVID-19 pandemic or there may have been major 
changes in predominant modalities of data collection 
(e.g., remote trial monitoring). Funder data from CT.gov 
is also generated from user input but classified as “NIH,” 
“Industry,” or “Other,” without more detailed information 
provided for the “Other” category, thereby limiting the 
identification of site subset with disproportionate spa-
tial unavailability to any given demographic. Enrollment 
was provided at the study level, rather than the site level, 
without additional information about the distribution of 
either anticipated or realized enrollments across sites, and 
so the full number of subjects was attributed to multiple 
locations for multi-site studies. Information about the reli-
ability of projected enrollment values was not made avail-
able. In addition, demographic data for enrollees of studies 
included in this study were not available for subject-level 
analysis, nor were race/ethnicity-specific data for rates of 
dropout or loss to follow-up. This cross-sectional study 
sought to assess spatial patterns of COVID-19 studies in 
the United States from a sample derived from CT.gov, 
which may suffer threats to validity from self-selection 
bias, particularly as relates to observational, Phase 1, 
or behavioral studies, which are generally exempt from 
CT.gov registration requirements. Future studies assessing 
disparities in access to clinical trials should seek to focus 
on individual study design strata with longitudinal follow-
up, ideally addressing mechanisms pertinent to each stra-
tum that may remediate disparities in participation by 
mitigating corresponding challenges to study access.
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Appendix

Table 4 Results for a multivariate linear model between z-scores of clustering for all COVID-19 study sites with demographic covariates for (A) 
Los Angeles Basin (n=2,958 census tracts) and (B) New York City (n=2,170 census tracts). Emphasis added for statistically significant correlations

Panel A  Panel B

Covariate β p Covariate β p

Black or African American -1.876 <0.001 Black or African American -0.129 0.159

American Indian or Alaska Native 4.741 0.377 American Indian or Alaska Native 4.180 0.416

Asian -0.969 <0.001 Asian -0.329 0.040

Native Hawaiian and Other Pacific Islander 15.801 <0.001 Native Hawaiian and Other Pacific Islander 17.375 0.341

Hispanic or Latino -3.606 <0.001 Hispanic or Latino 0.121 0.702

Other Race 3.968 <0.001 Other Race 0.307 0.630

Multi-Racial 0.801 0.657 Multi-Racial -0.756 0.526

Male 3.603 0.014 Male 5.473 <0.001

Female 4.437 0.002 Female 7.864 <0.001

Age 0-4 Years -8.270 0.002 Age 0-4 Years -5.691 0.004

Age 5-9 Years 7.422 0.036 Age 5-9 Years -7.725 0.001

Age 10-14 Years -6.454 0.015 Age 10-14 Years -13.973 <0.001

Age 15-19 Years -4.321 0.002 Age 15-19 Years -6.995 <0.001

Age 20-24 Years -0.752 0.589 Age 20-24 Years -3.763 0.008

Age 25-34 Years 0.602 0.670 Age 25-34 Years -5.021 <0.001

Age 35-44 Years -4.754 0.006 Age 35-44 Years -6.919 <0.001

Age 45-54 Years -8.951 <0.001 Age 45-54 Years -7.319 <0.001

Age 55-64 Years -2.658 0.195 Age 55-64 Years -7.499 <0.001

Age 75-84 Years -4.067 0.032 Age 75-84 Years -6.773 <0.001

Age 85+ Years 0.673 0.761 Age 85+ Years -9.169 <0.001

 Locations of COVID-19 study sites (green points) overlaid above z-scores of the Getis Ord Gi* clustering statistic, with blue-yellow-red shading 
indicating low to high gradient of z-scores
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