Skip to main content

Table 2 Stability analysis of equilibrium points

From: Does an innovative case-based payment scheme promote the hierarchical medical system? A tripartite evolutionary game analysis

E

Jacobian matrix eigenvalues

S

C

\(\lambda_{1}\)

\(\lambda_{2}\)

\(\lambda_{3}\)

RPS

E1(0,0,0)

\(Q_{1} - C_{1} - Q_{2} + C_{2}\)

\(H - C_{g} + P\)

\((W_{1} - S_{1} )(1 - n) - (W_{2} - S_{2} ) - L\)

(U, + , U)

N

/

E2(1,0,0)

\(Q_{1} - C_{1} - Q_{2} + C_{2}\)

\(C_{g} - H - P\)

\(H + T - (W_{2} - S_{2} ) + (W_{1} - S_{1} )(1 - n)\)

(U, -, U)

ESS

a

E3(0,1,0)

\(Q_{1} - C_{1} - Q_{3} + C_{3}\)

\(L + (W_{2} - S_{2} ) - (W_{1} - S_{1} )(1 - n)\)

\(- C_{g} - L - T - U\)

(U, U, -)

ESS

b

E4(0,0,1)

0

\(P - C_{g}\)

\(Q_{2} - C_{2} - Q_{1} + C_{1}\)

(0, + , U)

N

/

E5(1,1,0)

\(Q_{1} - C_{1} - Q_{3} + C_{3}\)

\((W_{2} - S_{2} ) - T - H - (W_{1} - S_{1} )(1 - n)\)

\(C_{g} + L + T + U\)

(U, U, +)

N

/

E6(1,0,1)

\(T\)

\(C_{g} - P\)

\(Q_{2} - C_{2} - Q_{1} + C_{1}\)

(+ , -, U)

N

/

E7(0,1,1)

0

\(Q_{3} - C_{3} - Q_{1} + C_{1}\)

\(D - C_{g} - T\)

(0, U, U)

N

/

E8(1,1,1)

\(Q_{3} - C_{3} - Q_{1} + C_{1}\)

\(- T\)

\(- D + C_{g} + T\)

(U, -, U)

ESS

c

  1. E Equilibrium Points, λ1, λ2, λ3: the three eigenvalues of the Jacobian matrix, RPS real part sign, S stability, ESS Evolutionary stable strategy, N Non-stable, C Conditions for reaching equilibrium, condition a is \(H + T - (W_{2} - S_{2} ) + (W_{1} - S_{1} )(1 - n) < 0\), Q1-C1 < Q2-C2, condition b is \(L + (W_{2} - S_{2} ) - (W_{1} - S_{1} )(1 - n) < 0\), Q1-C1 < Q3-C3, condition c is Cg + T < D, Q1-C1 > Q3-C3